Extinction and flame bifurcations of stretched dimethyl-ether premixed flames
نویسندگان
چکیده
Extinction limits and flame bifurcation of lean premixed dimethyl ether-air flames are investigated numerically using the counterflow flame with a reduced chemistry. Emphasis is paid to the combined effect of radiation and flame stretch on the extinction and flammability limits. A method based on the reaction front is presented to predict the Markstein length. The predicted positive Markstein length agrees well with the experimental data. The results show that flow stretch significantly reduces the flame speed and narrows the flammability limit of the stretched dimethyl ether-air flame. It is found that the combined effect of radiation and flow stretch results in a new flame bifurcation and multiple flame regimes. At an equivalence ratio slightly higher than the flammability limit of the planar flame, the distant flame regime appears at low stretch rates. With an increase of the equivalence ratio, in addition to the distant flame, a weak flame isola emerges at moderate stretch rates. With a further increase of the equivalence ratio, the distant flame and the weak flame branches merge together, resulting in the splitting of the weak flame branch into two weak flame branches, one at low stretch and the other at high stretch. Flame stability analysis demonstrates that the high stretch weak flame is also stable. Furthermore, a K-shaped flammability limit diagram showing various flame regimes and their extinction limits are obtained.
منابع مشابه
Stability analysis of near-limit stretched premixed flames
The dynamics of radiative, near-limit, stretched premixed flames was investigated analytically and numerically, with emphasis on pulsating stability for sub-unity Lewis numbers. The analysis includes both flame stretch and order-unity heat loss, and yields a dispersion equation for the stability of radiative stretched flames subjected to symmetrical and asymmetrical perturbations. The dispersio...
متن کاملEffect of Hydrogen Addition on the Flammability Limit of Stretched Methane/Air Premixed Flames
A computational study is performed to investigate the effects of hydrogen addition on the fundamental characteristics of stretched methane/air premixed flame in an opposed flow configuration. The problem is of interest as a potential application to gas turbines and spark-ignition engines, where it has been anticipated that addition of a small amount of hydrogen will extend the lean flammability...
متن کاملA comparative numerical study of premixed and non-premixed ethylene flames
Detailed numerical simulations of premixed and non-premixed C2H4/air flames were conducted, using six available kinetic mechanisms. The results help assess differences between these mechanisms and are of interest to proposed hydrocarbon-fueled SCRAMJET concepts, in which C2H4 can be expected to be a major component of the thermally cracked fuel. For premixed flames, laminar flame speeds were ca...
متن کاملEvaluation of chemical-kinetics models for n-heptane combustion using a multidimensional CFD code
0016-2361/$ see front matter 2011 Elsevier Ltd. A doi:10.1016/j.fuel.2011.10.035 ⇑ Corresponding author. Tel.: +1 9372558781. E-mail address: [email protected] (V.R. Katta). Computational fluid dynamics (CFDs)-based predictions are presented for nonpremixed and partially premixed flames burning vaporized n-heptane fuel. Three state-of-the-art chemical kinetics models are incorporated into a tim...
متن کاملEffects of Combustible Dust Clouds on the Extinction Behavior of Strained, Laminar Premixed Flames in Normal Gravity
An experimental and numerical study was performed on the interaction of combustible solid particles with atmospheric, strained, laminar premixed methane/air and propane/air flames in normal gravity. The study was conducted in the opposed-jet configuration in which a single flame was stabilized below the gas stagnation plane by counterflowing a mixture against an air jet. Into the flame were see...
متن کامل